13 research outputs found

    Soil microbial community structure and functionality changes in response to long-term metal and radionuclide pollution

    Get PDF
    Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites

    Coordination in hierarchical pickup and delivery problems using delegate multi-agent systems

    No full text
    Pickup and delivery problems are a generalization of the planning problem faced by transport companies. Large logistics providers often employ a hierarchical ‘hub and spoke’ overlay network to connect pickup and drop off sites. Hierar- chical pickup and delivery problems pose two major challenges: (1) determining suitable routes from the origin to the destination of packages through the logistics providers’ network, and (2) allocating the resources that are required for pickup, transporting and delivering the packages along such a route. By combining traditional resource allocation techniques with swarm algorithms, the approach in this paper offers a decen- tralized solution to pickup and delivery problems in hierarchical environments. Resources are scheduled locally at the node from which they operate, resulting in a distribution of many local resource schedules. A swarm approach called delegate multi- agent systems is used to extract information from relevant localized schedules and combine them in consistent global paths. The ant-like agents in these delegate multi-agent systems also redistribute feedback from the path planning mechanism to the decentralized resource scheduling mechanism. Results obtained by this hybrid approach show that it outperforms greedy and static alternatives.status: publishe

    M42 aminopeptidase catalytic site: the structural and functional role of a strictly conserved aspartate residue

    No full text
    The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron‐shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp‐62 was substituted with alanine, asparagine, or glutamate residue. The Asp‐62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp‐62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site

    Multi-layered hybrid perovskites templated with carbazole derivatives: Optical properties, enhanced moisture stability and solar cell characteristics

    No full text
    Research into 2D layered hybrid perovskites is on the rise due to the enhanced stability of these materials compared to 3D hybrid perovskites. Recently, interest towards the use of functional organic cations for these materials is increasing. However, a vast amount of the parameter space remains unexplored in multi-layered (n &gt; 1) hybrid perovskites for solar cell applications. Here, we incorporate carbazole derivatives as a proof of concept towards the use of tailored functional molecules in multi-layered perovskites. Films of low-n carbazole containing perovskites show high photoconductivity half-lifetimes. Higher-n (〈n〉 = 40) multi-layered perovskite films possess charge carrier diffusion lengths comparable to MAPI thin films. Solar cells containing these materials have comparable efficiencies to our MAPI and phenethylammonium (PEA)-containing multi-layered perovskite reference devices. Moisture stability tests were performed both at the material and device levels. In comparison to MAPI and PEA-based materials and solar cells, the addition of a small percentage of the carbazole derivative to the perovskite material significantly enhances the moisture stability.</p

    Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics

    No full text
    Research into 2D layered hybrid perovskites is on the rise due to the enhanced stability of these materials compared to 3D hybrid perovskites. Recently, interest towards the use of functional organic cations for these materials is increasing. However, a vast amount of the parameter space remains unexplored in multi-layered (n > 1) hybrid perovskites for solar cell applications. Here, we incorporate carbazole derivatives as a proof of concept towards the use of tailored functional molecules in multi-layered perovskites. Films of low-n carbazole containing perovskites show high photoconductivity half-lifetimes. Higher-n (hni ¼ 40) multi-layered perovskite films possess charge carrier diffusion lengths comparable to MAPI thin films. Solar cells containing these materials have comparable efficiencies to our MAPI and phenethylammonium (PEA)-containing multi-layered perovskite reference devices. Moisture stability tests were performed both at the material and device levels. In comparison to MAPI and PEA-based materials and solar cells, the addition of a small percentage of the carbazole derivative to the perovskite material significantly enhances the moisture stability

    Multi-layered hybrid perovskites templated with carbazole derivatives: Optical properties, enhanced moisture stability and solar cell characteristics

    No full text
    Research into 2D layered hybrid perovskites is on the rise due to the enhanced stability of these materials compared to 3D hybrid perovskites. Recently, interest towards the use of functional organic cations for these materials is increasing. However, a vast amount of the parameter space remains unexplored in multi-layered (n &gt; 1) hybrid perovskites for solar cell applications. Here, we incorporate carbazole derivatives as a proof of concept towards the use of tailored functional molecules in multi-layered perovskites. Films of low-n carbazole containing perovskites show high photoconductivity half-lifetimes. Higher-n (〈n〉 = 40) multi-layered perovskite films possess charge carrier diffusion lengths comparable to MAPI thin films. Solar cells containing these materials have comparable efficiencies to our MAPI and phenethylammonium (PEA)-containing multi-layered perovskite reference devices. Moisture stability tests were performed both at the material and device levels. In comparison to MAPI and PEA-based materials and solar cells, the addition of a small percentage of the carbazole derivative to the perovskite material significantly enhances the moisture stability.ChemE/Opto-electronic Material

    Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells

    No full text
    The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices

    Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells

    No full text
    The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices

    Expertgroep City Distribution: De toekomst is dichterbij dan je denkt

    No full text
    1. Een Urban Consolidation Centre (UCC) maakt het mogelijk om de stad zero-emissie te beleveren en zorgt ervoor dat goederen gebundeld de stad in gaan. Met als doel het minder belasten van klimaat, gezondheid van mensen en leefbaarheid van de stad. 2. Het UCC is een multimodaal overslagpunt, geschikt voor een variëteit aan voertuigen. Consolidatie van stromen is belangrijk 3. Duidelijkheid over toekomstige zero-emissie-zones in steden is belangrijk om stappen te kunnen nemen. Een UCC bevindt zich niet ver buiten de rand van de zero-emissiezone, bij voorkeur op een bedrijventerrein.Transport and Logistic
    corecore